Lecture 23: Noncovalent Interactions

Reading: Anslyn & Dougherty, Chapter 3

Annoucements

- Problem Set 6 due now. Answer Key will be posted immediately.
- Final Exam: Mon, 12/12, 7-10pm, 207 BRL
 - Comprehensive

Today: Weak, Noncovalent Interactions

- Although usually weak, multiple noncovalent interactions can add up to BIG influence on reactivity or selectivity.
- Observed in solvent effects, enzymes, small molecule catalysis, etc.

Types of Noncovalent Interactions

- Steric hindrance (repulsive) not today
- Hydrogen bonds
- π-Interactions
 - Cation–π
 - **−** π-π
- Hydrophobic effect

(Note: This is not an inclusive list.)

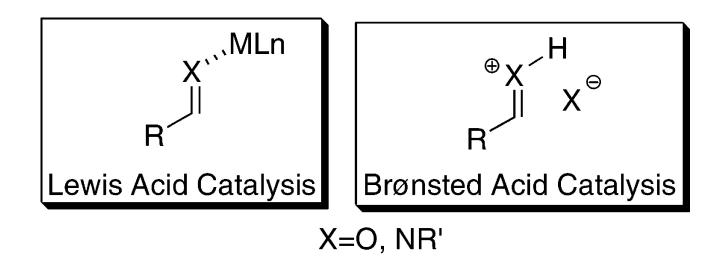
Hydrogen Bonds

 Generally between a heteroatom & heteroatom—H:

$$X \cdot \cdot \cdot \cdot H - Y$$

- Complicated
- Short range
- Energy of interaction proportional to $-1/r^2$

Different Strengths of H-bonds


Strength	A–H·····B interaction	Relative bond lengths	Bond angle	Bond energy (kcal/mol)
Strong	Mostly covalent	A–H ≈ H–B	175–180°	14–40
Medium	Mostly electrostatic	A–H < H–B	130–180°	4–15
Weak	Electrostatic	A–H << H–B	90–150°	<4

Jeffrey. An Introduction to H-Bonding. Oxford University Press: NY, 1997.

Examples of H-bonds in Nature

in DNA/RNA (ex: thymine-adenine)

General Review: Chem. Rev., 2007, 5713

Published in: Takahiko Akiyama; Chem. Rev. 2007, 107, 5744-5758.

DOI: 10.1021/cr068374j

Copyright © 2007 American Chemical Society

General Review: Chem. Rev., 2007, 5713

17a: 57%, 0% ee **17b**: 100%, 27% ee

17c: 96%, 87% ee

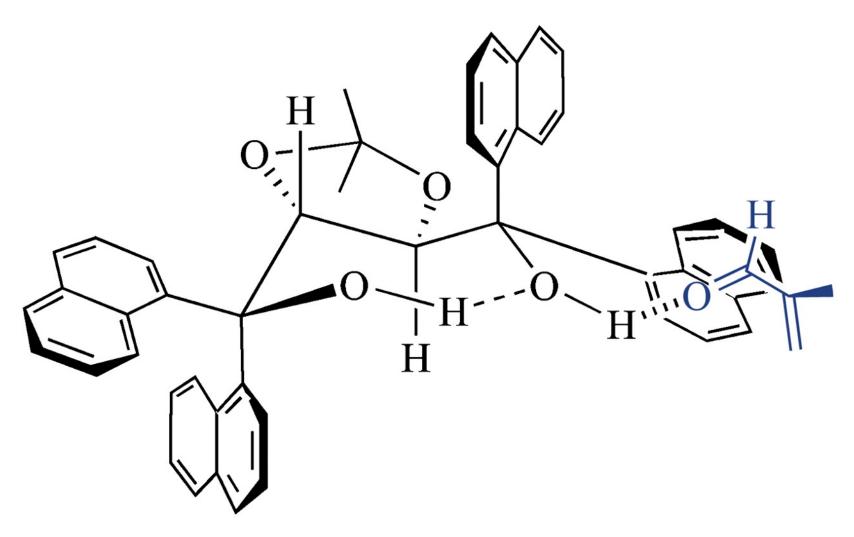
Published in: Takahiko Akiyama; Chem. Rev. 2007, 107, 5744-5758.

DOI: 10.1021/cr068374j

General Review: Chem. Rev., 2007, 5713

Published in: Takahiko Akiyama; Chem. Rev. 2007, 107, 5744-5758.

DOI: 10.1021/cr068374j

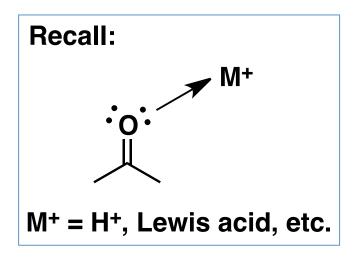

Copyright © 2007 American Chemical Society

General Review: Chem. Rev., 2007, 5713

Solid-state structures of TADDOL 4a-c.

Avinash N. Thadani et al. PNAS 2004;101:5846-5850

A proposed working model for the TADDOL-catalyzed Diels-Alder reactions.


Avinash N. Thadani et al. PNAS 2004;101:5846-5850

Many Other Types of H-Bonds in Small-Molecule Catalysis

General Review: Chem. Rev., 2007, 5713

- Dual H-bond donors:
 - Jacobsen Nature 2009, 461, 968
 - Jacobsen JACS 2009, 131, 15358
- H-bonding in Lewis acidic catalysts:
 - Corey JACS 2002, 124, 9992
 - Fadden-Row, Sherburn ACIE 2008, 47, 7013

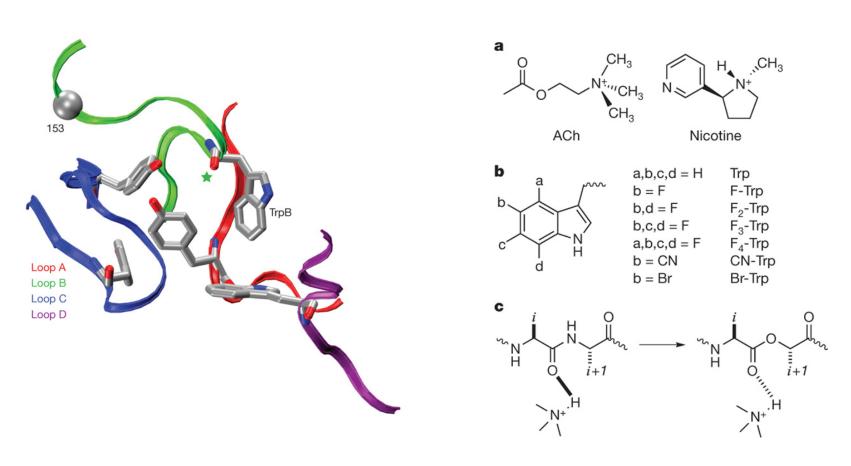
Cation–π Interactions

Cation–π Interactions

- Linear correlation between strength of cation— π interaction & electrostatic potential of arene.
- Predominantly electrostatic (but not exclusively, also some hydrophobic effects, etc.). EDG's strengthen cation— π interations.

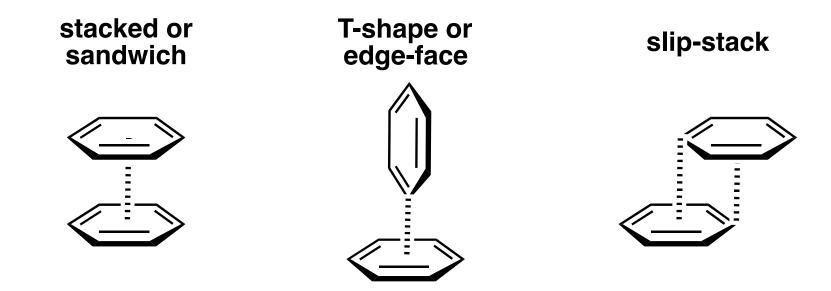
Cation-π Interaction Strengths

Gas Phase Binding Energy (kcal/mol)

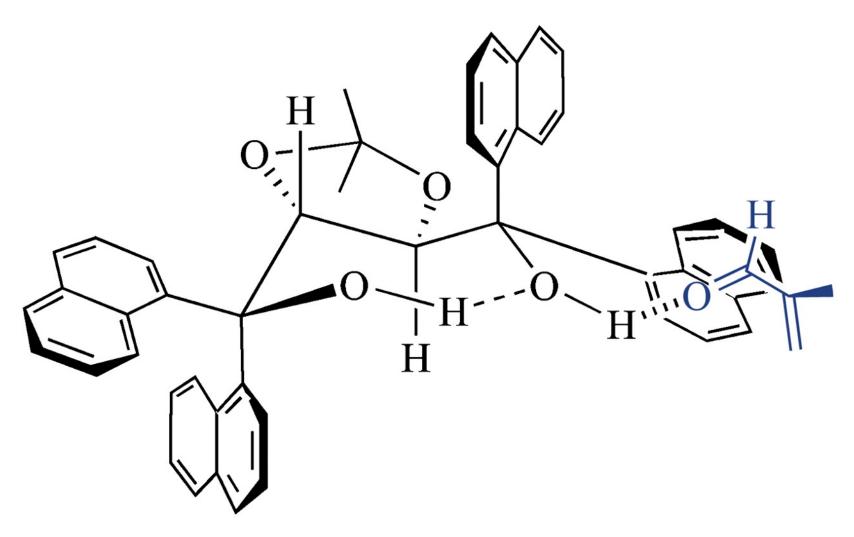

$$K^{+} + H_{2}O \longrightarrow \overset{+K}{\longrightarrow} H$$
18

$$K^+$$
 + $\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$ 19

Size of cation also matters... Li⁺ is bound more tightly than Rb⁺ or NMe₄⁺.


Phys Org Studies: JACS 1996, 2307. Chem Rev 1997, 1303. Science 1996, 163.

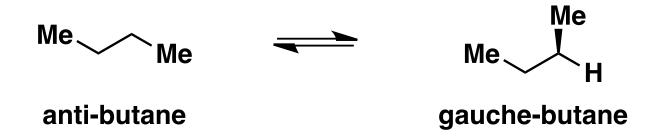
Cation–π in Nature: Acetyl Choline Binding Proteins: Brain vs. Muscle



π – π Interactions

• Due to electrostatic & dispersion & other forces

A proposed working model for the TADDOL-catalyzed Diels-Alder reactions.



Avinash N. Thadani et al. PNAS 2004;101:5846-5850

Hydrophobic Effect

- "Observation that hydrocarbons & related 'organic' compounds are insoluble in water."
- Aggregation of organics in H₂O
- <u>Not</u> electrostatic
- Not well understood in quantitative sense
- Related to surface area of organics
- Important in protein structure, binding substrates to enzymes, micelles, bilayers, and organic chemistry!

Hydrophobic Effect: Surface Area Importance

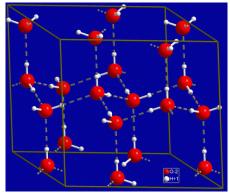
Medium	Anti : Gauche	
Gas phase or liquid butane	70 : 30	
H ₂ O	55 : 45	

Hydrophobic Effect: Effect on Reactivity

(mixture of endo & exo isomers)

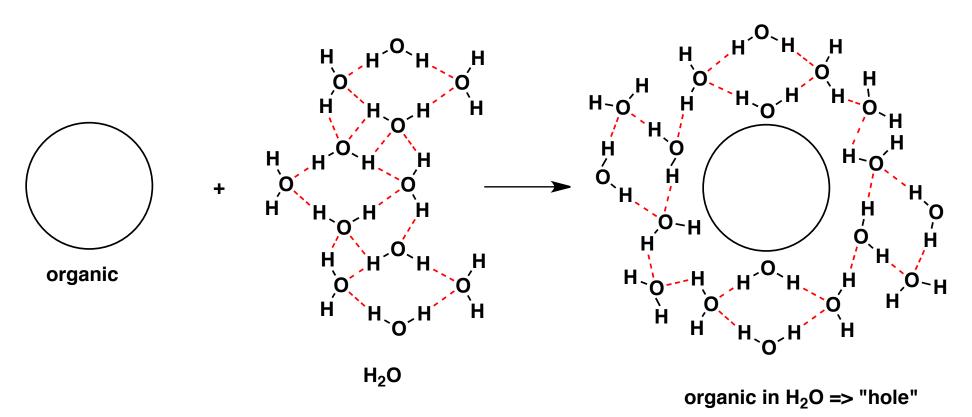
Solvent	K_{rel}
Isooctane	1
MeOH	12
H ₂ O	730

Origin of the Hydrophobic Effect


First consider H₂O...

At room temperature: liquid

 high cohesive energy/surface tension, but <u>dynamic</u> (more disordered, higher entropy)



At 0 °C: solid (ice)

- 4 H-bonds for each H₂O molecule
 enthalpically favorable (lots of good
- H-bonding)
- entropically costly (<u>very</u> ordered)

Origin of the Hydrophobic Effect

- Around "hole", H-bonds are lost.
- To compensate, remaining H-bonds get stronger -> Enthalpically neutral!
- But, results in "ice-like" structure around hole -> Entropy decreases (costly).
- Because 2 "holes" have more surface area than 1 "hole", aggregation of organics in water is less entropically costly.

Thanks for a great semester!!