Initials:	1
Name:	

Chem 633: Advanced Organic Chemistry 2016 ··· Midterm 1

Please answer the following questions *clearly and concisely*. In general, use pictures and less than 10 words in your answers.

Write your answers in the space provided.

Write your initials on each page you want graded.

There are 10 total pages to this exam. The last 2 pages were intentionally left blank and may be used for scratch paper. Please be sure your copy has 10 pages before you begin.

Molecular models are allowed.

Calculators are unnecessary and prohibited.

Problem	Points
1	/12
2	/18
3	/20
4	/15
5	/20
6	/15
TOTAL	/100

1. (12 points) Clearly draw the most stable conformation of the following molecules. No explanation is necessary.

$$\begin{array}{c} \oplus \quad \text{CH}_3 \\ \text{H}_2\text{C} \longrightarrow \\ \text{SiMe}_3 \end{array}$$

Initials:	
muais.	

2. (18 points)

(a) Based on your chemical intuition, please name and draw the HOMO and LUMO of water (H₂O).

Name of HOMO of H₂O:	Picture of HOMO of H₂O:
Name of LUMO of H ₂ O:	Picture of LUMO of H ₂ O:

(b) Please rationalize why H_2O is bent using Molecular Orbital Theory. Your answer should include molecular orbital diagrams of linear and bent H_2O . Please draw the molecular orbitals and their relative energies on the diagram below.

3. (20 points) Molander reported the following useful method for the stereoselective formation of product 2 (JACS 1991, 113, 3608). In this reaction, Me₃SiOTf acts as a catalytic Lewis acid, where Si is the Lewis acidic atom, and OTf is a leaving group. Importantly, the OCH₃ group is *critical* for diastereoselectivity.

R ¹	R ²	Ratio of 2:3
Me	Me	1.5 : 1
i-Pr (i -Pr = CHMe ₂)	Me	5:1
<i>i</i> -Pr	<i>i</i> -Pr	15:1

(b)	Please drav	w a reaso	nable arrow	-pushing	mechar	nism	for the	transfo	rmatio	on of	1 to 2. B	e sure	your
	answer inc	ludes an	explanation	for the	role of	the	OCH ₃	group.	You	may	assume	Me₃Si	i–CN
	hydrolyzes	to form C	N ⁻ You do i	not need	to show	this	sten						

Initials:	5
(3 – continued) (c) Please explain the observed stereoselectivity, including the trend shown in the talk the plant of the	
should include clearly drawn structures and less than 10 words. (Hint: The steredependent on the relative stability of the products.)	oselectivity is not

4. (15 points) Phosphites (1) are known to undergo 1,4- additions to α,β -unsaturated carbonyls (2), ultimately resulting in the formation of phosphorane 4. The rate of this reaction depends on Step 1, so you only need to consider Step 1. Please explain the relative rates of the phosphites shown in the table. Hint: Because you are considering what would stabilize the transition state, you can consider either the forward (1+2 -> 3) or the reverse (3 -> 1+2) reaction.

Phosphite	Relative Rate
O-P-O (A)	1
OMe -P (B)	125
P(OEt) ₃ (C)	250
OO_P_OMe (D)	750

5. (20 points) For this question, please consider the equilibrium of 1 and 2.

(a) Please draw the lowest energy conformations of 1 and 2.

Lowest energy conformation of 1:	Lowest energy conformation of 2:
(b) Based on values we discussed in lecture, plea Please clearly explain your reasoning (remember: a	se predict an <i>approximate</i> ΔG° for this equilibrium. a picture is worth 1000 words!).

(c) Please clearly describe the experiment and data analysis you would do to experimentally determine $\Delta G^\circ,\,\Delta H^\circ,$ and ΔS° for this equilibrium.

6. (15 points) (a) Please draw a reasonable arrow-pushing mechanism for the following reaction (Grossman, Chapter 3, #4i).

- (b) Please explain the stereochemistry of the new stereocenters formed in the product.

This page has intentionally been left blank, so that you may use it for scratch paper.

9

nitials:	10
	10

This page has intentionally been left blank, so that you may use it for scratch paper.