Initials: \qquad

Name: \qquad

Chem 633: Advanced Organic Chemistry

Midterm 1
Please answer the following questions clearly and concisely.
Write your answers in the space provided.
Write your initials on each page you want graded.
There are 8 total pages to this exam. Please be sure your copy has 8 pages before you begin.

Molecular models are allowed.

Calculators are unnecessary and prohibited.

Problem	Points
1	$/ 20$
2	$/ 10$
3	$/ 15$
4	$/ 15$
5	$/ 10$
6	$/ 10$
7	$-\quad / 100$

Initials:

1. (20 points) Please clearly draw the lowest energy conformations of the following molecules. No explanation is necessary.
(a) $\stackrel{\perp}{\sim}$
(b)

(c)

(d)

2. (10 points) The $\mathrm{N}-\mathrm{H}$ stretching frequency of cis-methyl diazine is $200 \mathrm{~cm}^{-1}$ lower than the trans isomer (Craig, N. C.; Kliewer, M. A.; Shih, N. C. J. Am. Chem. Soc. 1979, 101, 2480). Please provide an explanation for this result.

	vs.	Me H
cis		trans
$v(\mathrm{~N}-\mathrm{H})=2188 \mathrm{~cm}^{-1}$		$v(\mathrm{~N}-\mathrm{H})=2317 \mathrm{~cm}^{-1}$
weaker $\mathrm{N}-\mathrm{H}$ bond		stronger $\mathrm{N}-\mathrm{H}$ bond

3. (15 points) Somewhat surprisingly, one of the t-butyl $\left(\mathrm{CMe}_{3}\right)$ groups adopts an axial position in the preferred conformation of 1,3,5-tri(t-butyl)hexahydro-1,3,5-triazine (Jones, R.; Katrizky, A.; Snarey, M. J. Chem. Soc. B 1970, 135).

(a) Please draw a reaction coordinate diagram for this reaction.
(b) Please rationalize the preference for conformation 2. In your answer, please address (1) why conformation 2 is more stable than conformation 1 and (2) why the conformation with an axial t-butyl group is accessible for hexahydro-1,3,5triazine, but not accessible for t-butylcyclohexane.
4. (15 points) (a) The reaction of benzylamine and methyl methylacrylate results exclusively in the formation of product 3. Please explain the selectively for product 3 over 4.

(b) In contrast, product 6 is the exclusive product in the intramolecular addition of an amine to a similar electrophile (Baldwin, J.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. J. Chem. Soc., Chem. Commun. 1976, 736). Please explain the selectivity for product 6 over 5.

5. (10 points) George and coworkers reported the following acid-catalyzed rearrangement in their recent synthesis of liphagal (George, J. H.; Baldwin, J. E.; Adlington, R. M. Org. Lett. 2010, 12, 2394). Please propose a reasonable arrow-pushing mechanism for this transformation.

6. (20 points) The equilibrium constant (K_{eq}) of the equilibrium between \mathbf{A} and \mathbf{B} was measured at various temperatures, giving the plot shown below.

(a) What is $\Delta \mathrm{H}^{\circ}$ for this equilibrium?
(b) What is ΔS° for this equilibrium?
(c) What is $\Delta \mathrm{G}^{\circ}$ for this equilibrium at $25^{\circ} \mathrm{C}$?
(d) At $25^{\circ} \mathrm{C}$, what is the ratio of $\mathbf{A}: \mathbf{B}$?

Initials:
7. (10 points) Please propose a reasonable arrow-pushing mechanism for the following transformation (Grossman, The Art of Writing Reasonable Organic Reaction Mechanisms, p. 101).

