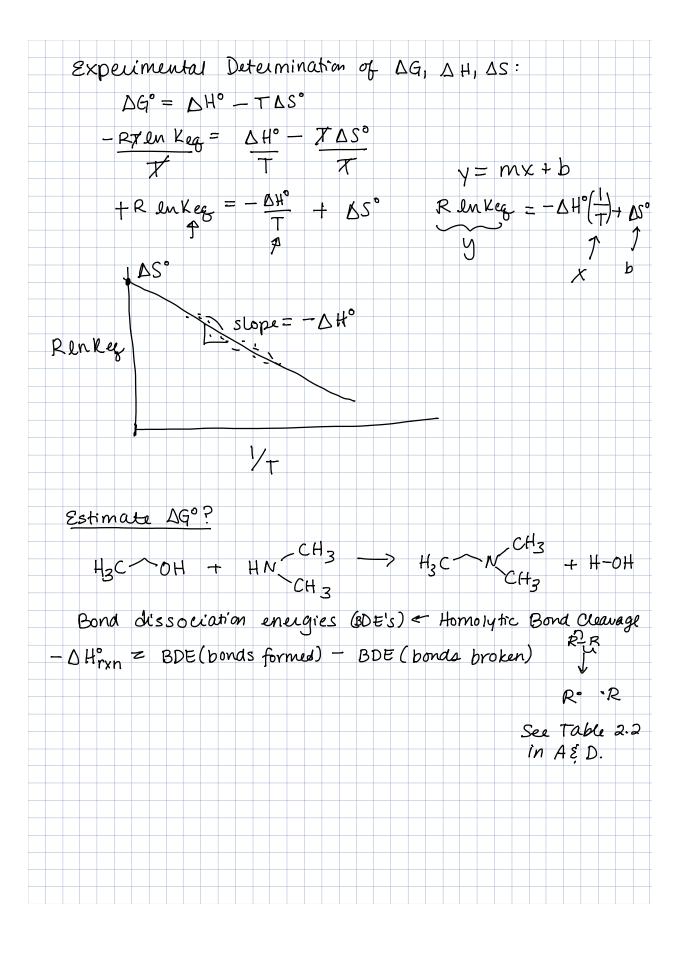

## Lecture 7: Thermodynamics Today: Definitions and equations of Thermodynamics Conformational analysis (the beginning) Announcements: Problem Set 2 due Thurs, 9/22, at beginning of lecture. • Seminar: Prof. John Arnold (UC, Berkeley), Wed, 4pm, 219 BRL "Catalytic and Stoichiometric Reactivity with Early Transition Metals" OJC on Thursday, 12:30, 219 BRL






| Note: Temperature Matters!                |          |                    |            |                                 |  |
|-------------------------------------------|----------|--------------------|------------|---------------------------------|--|
| T                                         | ΔG°      | Keg                | % B        | 70A                             |  |
| 298 K                                     | - 1.0    | 5.44               | 85         | 15                              |  |
| 195 K                                     | -1.0     | 13.2               | 93         | 7                               |  |
| Important Equilibrium: Acid/Base => pKa's |          |                    |            |                                 |  |
| CH                                        | 30H +    | H <sub>2</sub> 0 = | CH300      | + H <sub>3</sub> 0 <sup>⊕</sup> |  |
| ν                                         | Leg= Cc  | ц Ф7 Сы.           | <b>₽</b> 7 |                                 |  |
|                                           | <u> </u> | #30-7 [ H2         |            |                                 |  |
| [1. A] =                                  | 55 M in  |                    |            |                                 |  |
|                                           |          |                    | CHJOO][H3  | .0⊕7                            |  |
| 72                                        | - regunz |                    | CH30H      |                                 |  |
| ملاه :                                    | = -109 k | ,                  | 0013011    |                                 |  |
| pra -                                     | 109      | · c                |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |
|                                           |          |                    |            |                                 |  |

Components of DG°: DG° = DHO - TDS° DH' = enthalpy - kcal/mol -> reflects strength/energy of bond (or interactions) DHP > Ø endothermic DH° < Ø - exothermic  $\Delta S^{\circ} = \text{entropy}$   $-D eu = \frac{\text{cal}_{\text{mol}} \cdot K}{\text{cal}_{\text{mol}} \cdot K}$ - measure of disorder of a system related to temperature

1 temp er 7 disorder Degrees of Freedom -> # of ways molecules can move - translational (through space) -rotational (tumbling) - vibrational (internal motion) Lo Complex DS is small if structures are similar. Often



$$H_{3}C \times OH + H_{5}^{5} N^{-}CH_{3} \longrightarrow H_{3}C \times N^{-}CH_{3} + HO_{5}^{5} H$$

$$CH_{3}$$

$$BDE's q_{2.3}$$

$$LCAH (H_{2}C-OH) (H_{2}N-H) (H_{3}C-NH_{2})$$

$$-\Delta H^{o} = (84.9 + 119) - (92.3 + 107.4)$$

$$-\Delta H^{o} = + 4.2 \text{ k cal/mol}$$

$$\Delta H^{o} = -4.2 \text{ k cal/mol}$$

$$C 1000: 1$$

## Conformational Analysis - analysis of 3D conformation of molecule - You should be able to visualize 3D structures in your head. PRACTICE THIS Ly Model kit. Steveochemistry chirality = "handedness" same connectivity, different conformation/configuration Types of Stereoisomers (1) Enantioners -non-superimposable mirror images stereogenic center J gives birth to Stereochen/chirality o plane of symmetry achinal CH3 CH3 HO **2**0H achiral 401/r chiral Meso

chisal Me racemic 2 ways to Report Unequal Mixtures (1) % ee = % enantioneric excess related to optical rotation (a) (major enant - minor enant) = ee  $\alpha_{max}$ (major + minor) T of enantiopure material (2) er = enantioneric natio % ee minor major er 50:50 Ø 75:25 3 50 91:9 82 10 99:1 100 98