INSTRUCTOR: CARLA MORRIS NAME: \qquad

In problems 1-4 differentiate (5pts each) you can leave answer after first step

1. $f(x)=\left(5 x^{7}+2 x^{6}+9 x^{3}\right)^{5}(7 x+3)^{8}$
2. $f(x)=\frac{9}{\left(5 x^{2}+8 x+1\right)^{4}}$
3. $f(x)=\left(7 x^{4}+7 x^{2}+1 / x^{4}\right)^{25}$
4. $f(x)=\left(\frac{x^{2}+8 x+5}{x^{3}+27 x+1}\right)^{20}$

5pts 5. Find dy/dx using the chain rule if $y=7 u^{8}$ and $u=4 x^{5}+2 x^{3}+1$

5pts 6. Find the equation of the tangent line to the curve $y=(3 x-5)^{4}(x+9)$ at $x=2$

IN PROBLEMS 7-8 USE IMPLICIT DIFFERENTIATION TO FIND dy / dx 5pts 7. $4 x^{6}-6 y^{3}=9 x^{3}+7 y \quad$ 5pts $8.3 x^{6} y^{5}+7 x^{3}=9 y^{2}+18 x$

5pts 9. Solve for $\mathrm{x}: ~ 4^{5 \mathrm{x}+8}=(8)\left(4^{2 \mathrm{x}+5}\right)$

MATH221 CALCULUS I 100pts TEST 3 Spring’11 Page 2
\qquad

4pts 10. Solve for $\mathrm{x}:\left(5^{\mathrm{x}}\right)\left(\mathrm{x}^{3}\right)-\left(5^{\mathrm{x}}\right)\left(13 \mathrm{x}^{2}\right)+\left(5^{\mathrm{x}}\right)(42 \mathrm{x})=0$

4pts 11. Solve for $\mathrm{x}: \mathrm{e}^{4 \mathrm{x}}=625$

IN PROBLEMS 12-16 DIFFERENTIATE THE GIVEN FUNCTIONS (5PTS EACH)
12. $f(x)=20 x^{5} e^{7 x}$
13. $f(x)=\left(8 x^{6}+4 x^{5}+8 x+1\right)^{6}\left(e^{x}\right)$
14. $f(x)=\frac{e^{4 x}}{\left(2 x^{2}-5 x+3\right)^{8}}$
15. $f(x)=\ln \left(7 x^{6}+7 x^{4}+8 x^{3}+9 x+8\right)$
16.f $(x)=\left(7 x^{2}+4 x+3\right)^{11} \ln 5 x$

4pts 17. Write as a single logarithm $3 \ln (4 x-5)-5 \ln (3 x+1)-2 \ln (5 x+3)$
\qquad

4pts 18. Differentiate $\ln \left[(3 x-5)^{4}\left(5 x^{3}+9 x+4\right)^{10}\right]$ by writing as simpler logs first.

5pts 19. Suppose $\$ 750,000$ is invested at 6% compounded quarterly for 12 years. How much will it be worth at the end of that time?

5pts 20. Suppose $\$ 500,000$ is invested at 3% compounded continuously for 24 years. How much interest does it earn at the end of that time ?

4pts 21. Determine the percentage rate of change of the function at the point indicated $f(t)=6 t^{5}$ at $t=2$

FORMULAS

1. $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
2. $d / d x\left[e^{g(x)}\right]=e^{g(x)} g^{\prime}(x)$
3. $\mathrm{f}^{\prime}(\mathrm{t}) \times 100 \%$
f (t)
4. $\mathrm{I}=\mathrm{Pr} \mathrm{t}$
5. $A=P(1+r / n)^{n t}$
6. $\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}}$
7. $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
8. $d / d x[\ln g(x)]=g^{\prime}(x)$
g (x)
9. $P=A e^{-r t}$
