MATH221 CALCULUS I 100pts TEST 2 Spring’11 INSTRUCTOR: CARLAMORRIS Page 1 NAME: \qquad

6pts 1. Is $f(x)$ continuous at $x=1$? (show work) $f(x)= \begin{cases}3 x-5 & x=2 \\ \frac{x^{2}-3 x+2}{x-2} & x \neq 2\end{cases}$

IN PROBLEMS 2-5 FIND THE INDICATED DERIVATIVES (5PTS EACH)

2. $f^{\prime}(x)$ if $f(x)=8 x^{5}+3 x^{4}-5 x^{3}+9 x+1$
3. $d / d t\left(5 a^{6} t^{5}+7 b^{3} t^{3}+7 t^{2}-2 t+3\right)$
4. $f^{\prime}(t)$ if $f(t)=\left(6 t^{5}+4 t^{3}+3 t\right)^{45}$
5. $d^{2} / d r^{2}\left(8 r^{3}+7 r^{2}+9 r+6\right) \mid r=1$

5pts 6. Find the equation of the tangent line to the curve $f(x)=7 x^{2}+5 x+7$ at $x=2$

8pts 7. Sketch the graph of a function that has the following properties, $f^{\prime}(3)=0 ; f(3)=1, f(0)=10$; concave up for all x.

10pts 8.Locate all possible extrema of $f(x)=(1 / 3) x^{3}+4 x^{2}+12 x$. Also check for concavity and inflection points. Give intervals for increasing, decreasing, concavity, etc and then Sketch the graph.

TEST 2 Spring’11
Page 2

INSTRUCTOR: CARLA MORRIS NAME:

10pts 9. Graph $f(x)=x^{4}-2 x^{2}$ by finding the x and y intercepts, relative extrema, inflection points, intervals increasing or decreasing and intervals of concavity.

8pts 10 . Find the minimum value of $f(t)=10 t^{3}-15 t^{2}+7, t>0$ and give the value of t where this minimum occurs.

10pts 11. Suppose a man has $\$ 720$ build a rectangular enclosure. The north and south sides of the enclosure cost sides cost $\$ 6$ per running yard while the east and west sides which are more expensive more cost $\$ 9$ per running yard. Find the dimensions of the enclosure that will maximize the area of the enclosure.

8pts 12. Given the cost function $C(x)=x^{3}-15 x^{2}+100 x+150$ find the minimum marginal cost.

15pts 13. Suppose the consumer demand for a certain item as a function of its price \mathbf{p} is given by $\mathbf{x}=\mathrm{D}(\mathbf{p})=40-(\mathrm{p} / 6)$. Determine the production level and price that maximizes the profit if the cost output function is given by

$$
C(x)=x^{3}+9 x^{2}-360 x+2,000
$$

formulas

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \quad a x+b y=c \quad y=m x+b \quad m_{1}=m_{2} \\
& m_{1}=-1 / m_{2} \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

