MATH117 Pre-Calculus for Scientists and Engineers

1. Sketch the graph of $y=2^{x}-3$
2. Sketch the graph of $y=e^{x+1}$
3. When a certain medical drug is administered to a patient, the number of milligrams remaining in the patient's bloodstream after t hours is modeled by $\mathrm{D}(\mathrm{t})=50 \mathrm{e}^{-0.2 \mathrm{t}}$
How many milligrams of the drug remain in the patient's bloodstream after 3 hours?
4. If $\$ 5000$ is invested at an interest rate of 4% per year and interest is compounded continuously how much is it worth after 18 years?
5. a) Express in exponential form $\log _{5} 625=4$
b) Express in logarithmic form $2^{-3}=\frac{1}{8}$
6. a) Evaluate $\log _{7} 49$
b) Evaluate $\ln e^{7}$
7. Graph $\mathrm{y}=\log _{4} \mathrm{x}$
8. Write as a single logarithm: $3 \ln x+4 \ln y+4 \ln (z+1)$
9. Use the laws of logarithms to expand $\log _{3}\left(\frac{x^{3}(x+1)}{(x-5)^{2}}\right)$

MATH117 Pre-Calculus for Scientists and Engineers

4pts 10. Solve $e^{2 x}-4 e^{x}+3=0$

4pts 11. Solve $\log _{4} x+\log _{4}(3 x-8)=2$

4pts 12. Solve $\log _{2}(x-3)+\log _{2}(x-2)<1$

4pts 13. A fox population in a certain region has a relative growth rate of 8% per year. It is estimated the population in 2005 was 18,000 . Find a function $n(t)=n_{0} e^{\text {rt }}$ that models the population t years after 2005.

4pts 14. A hot bowl of soup is served at a dinner party. It starts to cool according to Newton’s Law of Cooling so its temperature at time t is $\mathrm{T}(\mathrm{t})=70+130 \mathrm{e}^{-0.04855 t}$ where t is measured in minutes and T is the Fahrenheit temperature.
a) What is the initial temperature of the soup?
b) What is the temperature after 15 minutes?

4pts 15. First determine the value of x and then determine the value of the tangent at P. The point P is in QII of the unit circle.

$$
\mathrm{P}(\mathrm{x}, 3 / 5)
$$

In problems 16 - 21 use a unit circle, give the reference angle and quadrant, and then use trigonometric definition to give the numerical answer. (4 points each)
16. $\sin (10 \pi)$
17. $\tan \left(-\frac{3 \pi}{2}\right)$
18. $\cos \left(\frac{5 \pi}{6}\right)$
19. $\sec \left(\frac{5 \pi}{3}\right)$
20. $\csc \left(\frac{17 \pi}{4}\right)$
21.cot $\left(\frac{-5 \pi}{6}\right)$

4pts 22. Graph $y=25 \sin (4 x)$
4pts 23. Graph $\mathrm{y}=-10 \cos \left(2 \mathrm{x}-\frac{\pi}{3}\right)$

4pts 24. Graph $\mathrm{y}=5 \sec \left(\frac{1}{2} \mathrm{x}\right)$
4pts 25. Evaluate a) $\cos ^{-1}\left(\cos \frac{5 \pi}{6}\right)$
b) $\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)$

4pts 26. Evaluate $\tan \left(\tan ^{-1} \frac{4 \pi}{3}\right)$

4 pts. 27. Find a function that models the simple harmonic motion having the given properties. Assume displacement is zero is at time $t=0$.

Amplitude 35cm period 8s

Some formulas you may need

($\mathrm{y}=\mathrm{a} \sin \omega \mathrm{t}$ amplitude $|\mathrm{a}|$ period $\frac{2 \pi}{\omega}$ frequency $\frac{\omega}{2 \pi}$
$A \sin (B x+C)$ or $A \cos (B x+C),|A|=$ amp., period $=2 \pi / B$, p.s. $=-C / B$
$T(t)=T_{s}+D_{0} e^{-k t} D_{0}$ is initial difference in temperature between an object and its surroundings
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \quad\left(\frac{-\mathrm{b}}{2 \mathrm{a}}, \frac{-\mathrm{b}^{2}+4 \mathrm{ac}}{4 \mathrm{a}}\right) \quad \mathrm{A}=\mathrm{Pe}^{\mathrm{rt}} \quad \mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{\mathrm{nt}}$
$\cos ^{2} \theta+\sin ^{2} \theta=1$
$1+\tan ^{2} \theta=\sec ^{2} \theta$
$\cot ^{2} \theta+1=\csc ^{2} \theta$

