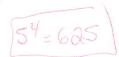
1. Sketch the graph of $y = 2^x - 3$ see graph paper

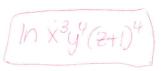

2. Sketch the graph of $y = e^{x+1}$ See graph paper

3. When a certain medical drug is administered to a patient, the number of milligrams remaining in the patient's bloodstream after t hours is modeled by $D(t) = 50e^{-0.2t}$

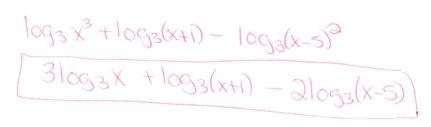
How many milligrams of the drug remain in the patient's bloodstream after 3 hours?

4. If \$5000 is invested at an interest rate of 4 % per year and interest is compounded continuously how much is it worth after 18 years?

5. a) Express in exponential form $\log_5 625 = 4$



b) Express in logarithmic form $2^{-3} = \frac{1}{8}$


6. a) Evaluate
$$\log_7 49$$
 $7^{\chi} = 49$ $7^{\chi} = 7^{\vartheta}$ $\left(\chi = 2\right)$

7. Graph $y = \log_4 x$ See graph paper

8. Write as a single logarithm: $3\ln x + 4\ln y + 4\ln(z+1)$

9. Use the laws of logarithms to expand $\log_3 \left(\frac{x^3(x+1)}{(x-5)^2} \right)$

SAMPLE TEST 3 (page 2)

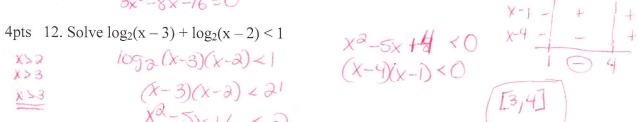
4pts 10. Solve
$$e^{2x} - 4e^x + 3 = 0$$

lve
$$e^{2x} - 4e^{x} + 3 = 0$$
 $e^{x} = 3$ $(e^{x} - 3)(e^{x} - 1) = 0$ or $e^{x} = 1$

4pts 11. Solve $\log_4 x + \log_4 (3x - 8) = 2$

$$\log_{4}x + \log_{4}(3x - 8) = 2$$

$$\log_{4}(x)(3x - 8) = 2$$


$$3x^{2} - 8x = 16$$

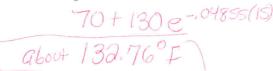
$$3x^{2} - 8x = 16$$

$$3x + 4(x - 4) = 0$$

$$x = -4/3, 4$$

$$(x-3)(x-2) < 21$$

4pts 13. A fox population in a certain region has a relative growth rate of 8% per year. It is estimated the population in 2005 was 18,000. Find a function $n(t) = n_0 e^{rt}$ that models the population t years


n(t) = 18,000 e.08+

- 4pts 14. A hot bowl of soup is served at a dinner party. It starts to cool according to Newton's Law of Cooling so its temperature at time t is $T(t) = 70 + 130e^{-0.04855t}$ where t is measured in minutes and T is the Fahrenheit temperature.

a) What is the initial temperature of the soup? 70+/30

b) What is the temperature after 15 minutes?

4pts 15. First determine the value of x and then determine the value of the tangent at P. The point P is in QII of the unit circle.

P(x, 3/5)

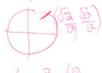
X2+(3)=1 X=-8

SAMPLE TEST 3 (page 3)

In problems 16-21 use a unit circle, give the reference angle and quadrant, and then use trigonometric definition to give the numerical answer. (4 points each)

16.
$$\sin(10\pi)$$

17.
$$\tan\left(-\frac{3\pi}{2}\right)$$


18.
$$\cos\left(\frac{5\pi}{6}\right)$$

19.
$$\sec\left(\frac{5\pi}{3}\right)$$

20.
$$\csc\left(\frac{17\pi}{4}\right)$$

$$21.\cot\left(\frac{-5\pi}{6}\right)$$

4pts 22. Graph $y = 25\sin(4x)$ See graph paper

4pts 23. Graph $y = -10\cos\left(2x - \frac{\pi}{3}\right)$ See graph paper

4pts 24. Graph $y = 5\sec\left(\frac{1}{2}x\right)$ see graph paper

4pts 25. Evaluate a) $\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$

b)
$$\cos^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{1/4}}{\sqrt{4}}$$

SAMPLE TEST 3 (page 4)

4pts 26. Evaluate $\tan \left(\tan^{-1} \frac{4\pi}{3} \right)$

4pts. 27. Find a function that models the simple harmonic motion having the given properties. Assume displacement is zero is at time t = 0.

Amplitude 35cm period 8s

Some formulas you may need

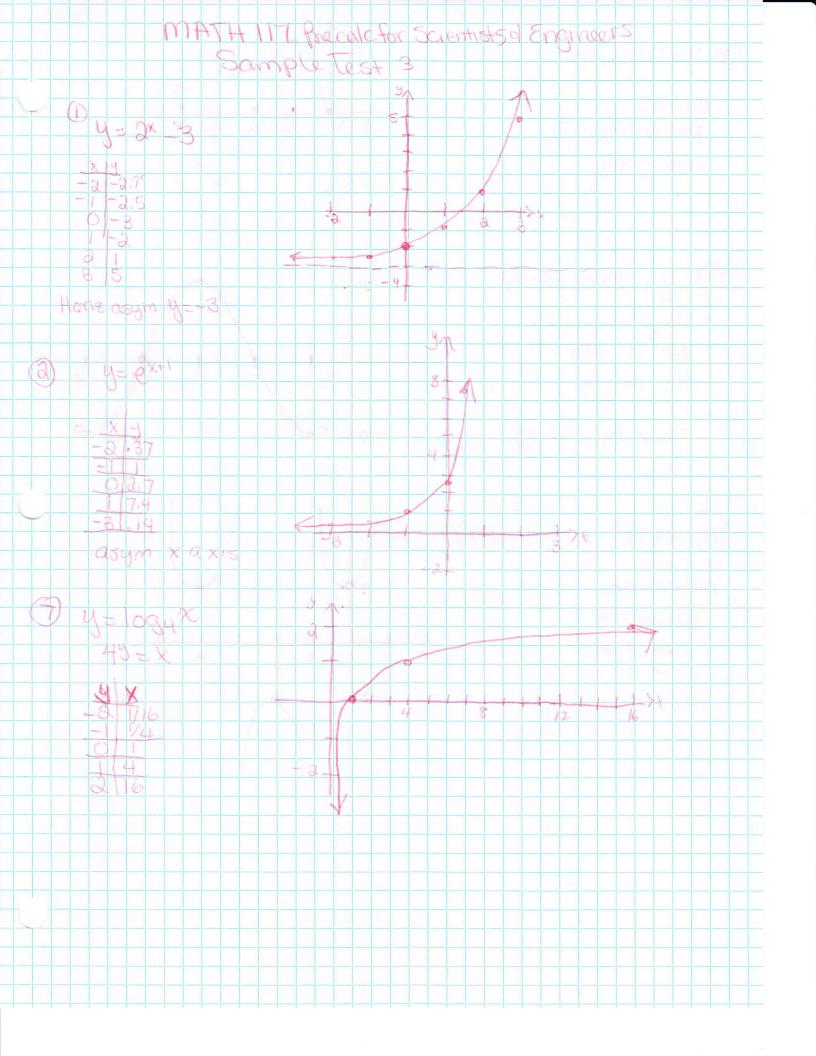
 $(y = a \sin \omega t \text{ amplitude } |a| \text{ period } \frac{2\pi}{\omega} \text{ frequency } \frac{\omega}{2\pi}$

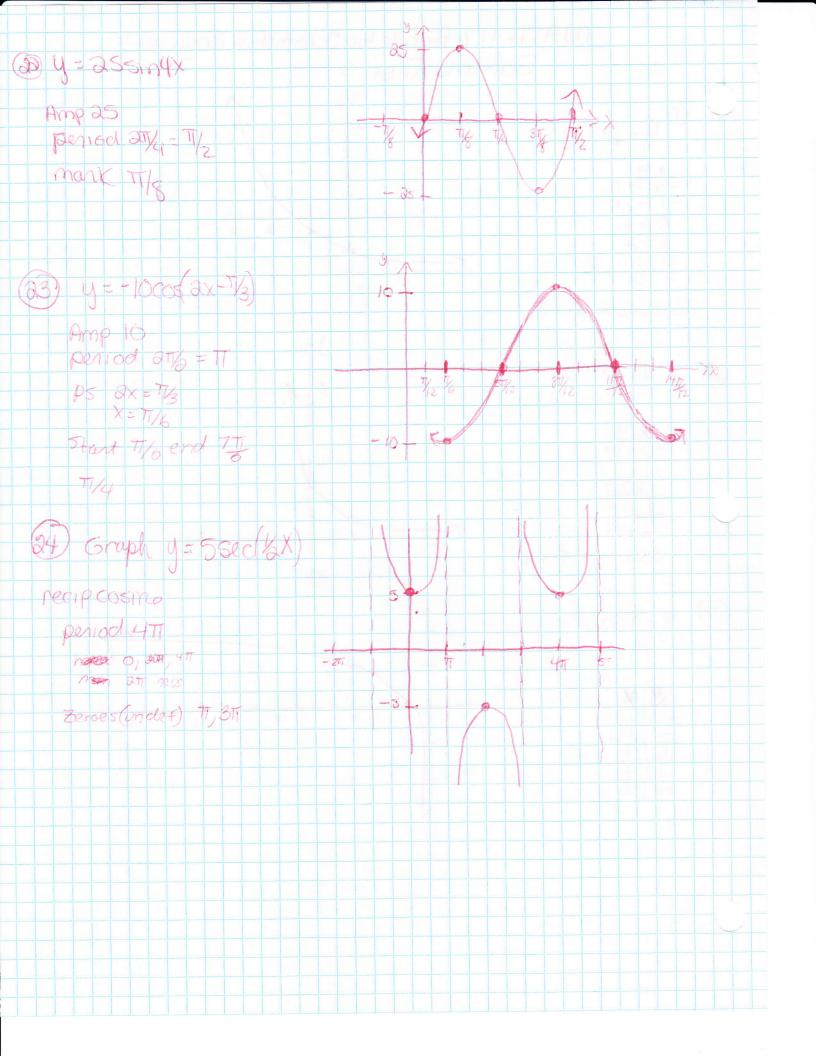
Asin(Bx + C) or Acos(Bx + C), |A| = amp., period = $2\pi/B$, p.s. = -C/B

 $T(t) = T_s + D_0 e^{-kt}$ D₀ is initial difference in temperature between an object and its surroundings

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \left(\frac{-b}{2a}, \frac{-b^2 + 4ac}{4a}\right) \qquad A = Pe^{rt} \qquad A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$\left(\frac{-b}{2a}, \frac{-b^2 + 4ac}{4a}\right)$$


$$A = Pe^{r}$$


$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

$$\cos^2\theta + \sin^2\theta = 1$$

$$\cos^2\theta + \sin^2\theta = 1 \qquad 1 + \tan^2\theta = \sec^2\theta \qquad \cot^2\theta + 1 = \csc^2\theta$$

$$\cot^2\theta + 1 = \csc^2\theta$$

