TEST 2 FALL 2011 Page 1

INSTRUCTOR: CARLA MORRIS NAME: \qquad

4pts 1. Graph $3 x-5 y=15$

4pts 2. If $f(x)=4 x^{3}+2 x^{2}+3 x$ find $f(2 a)$

4 pts 3. Is the following a function? Why or why not?

4pts 4 . What is the domain and range for the function below?

4pts 5. If $f(x)=\left\{\begin{array}{ll}3 x+5 & x<2 \\ x^{3}+2 & x \geq 2\end{array} \quad\right.$ determine $f(-1)$ and $f(4)$

5pts 6. Given $f(x)=x^{2}-3 x+2$ find $\frac{f(x)-f(a)}{x-a}$

5pts 7. Given $f(x)=x^{2}+5 x+2$ find $\frac{f(x+h)-f(x)}{h}$

MATH115 PRECALCULUS 100pts TEST 2 FALL 2011 p. 2

INSTRUCTOR:C. MORRIS
NAME: \qquad

4 pts 8 . Find the equation of the line with slope 6 that passes through $(5,3)$

4 pts 9 . Find the equation of the line passing through $(2,11 / 3)$ and $(8,5 / 3)$

4pts 10. Are the lines $y=(3 / 2) x+2$ and $3 x-2 y=6$ parallel, perpendicular, or neither? Explain your answer using slopes to guide you.

5pts 11. Graph $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1)^{2}-4$

5pts 12. Graph $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-8$
13. Graph $f(x)=-|x+2|+7$

5pts 14. Graph $\mathrm{f}(\mathrm{x})=[4 \mathrm{x}]$
15. Given $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{4}+5 \mathrm{x}^{3}-6 \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=6 \mathrm{x}^{4}-2 \mathrm{x}^{3}-3$

4pts a) Find $(f+g)(x)$ 4pts b) Find (f • g) (x)

5pts c) Find (fog)(x)

MATH115 PRECALCULUS 100pts TEST 2 FALL 2011 INSTRUCTOR: C. MORRIS p. 3
 \qquad

5pts 16. Find $f^{-1}(x)$ if $f(x)=4 x+3$

5pts 17. Find $\mathrm{f}^{-1}(\mathrm{x})$ if $\mathrm{f}(\mathrm{x})=(5 \mathrm{x}+3)^{3}-2$

4pts 18. Is the graph of $f(x)=x^{3}-8$ (problem12) one to one? Explain.

5pts 19. Find the equation of the circle centered at the origin with a diameter of 13 units.
$6 p t s 20$. Find the equation of the circle with endpoints of a diameter $(6,8)$ and $(21,16)$

Some formulas you may need

$$
\begin{array}{lll}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & y-y_{1}=m\left(x-x_{1}\right) \\
(x-h)^{2}+(y-k)^{2}=r^{2} & y=m x+b & m_{1}=m_{2} \\
m_{1}=-1 / m_{2} & 2 r=d &
\end{array}
$$

