MATH114 COLLEGE MATH		100pts. TEST	2 Fall 2011	INSTRUCTOR: <u>C. MORRIS</u>
	& STATISTICS	p.1		NAME:
8pts	s 1. Solve the following system of equations by <u>substitution</u>		8pts 2. Solve the following system of equations by <u>elimination</u>	
	$3\mathbf{x} + 2\mathbf{y} = 6$		7x - y = 2	
	$\mathbf{y} = 2\mathbf{x} - 11$		2x +	5y = 27

8pts 3. There are 25 coins in a child's piggy bank that total \$4.45. The coins are all either quarters or nickels. Set up a system of equations and solve it to determine how many of each type of coin there is.

8pts 4. If the national consumption function is given by C = 0.5y + 12 (in billions of dollars) a) What is the national consumption when disposable income is \$50(billion)?

b) What is the marginal propensity to consume?

- 8pts 5. Graph the solution to the system of inequalities $5x + 3y \le 15, x \ge 0, y \ge 0$
- 8pts 6. Graph the solution to the system of inequalities $x \ge 0$, $y \ge 0$, $x + y \le 8$, $y \ge 2x 1$
- 6pts 7. Using your information from problem 6 Maximize C = 5x + 7y

If you did not do problem 6 then use the following ordered pairs (these are not the right ones) $\{(0,2), (1,4), (4,5), (3,4)\}$

6pts 8. Find the maximum value of the feasible region shown below using C = 3x + 5y

8pts 9. Using the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ find any solutions to $5x^2 + 19x = 12 + 2x$

8pts 10. Solve by factoring $x^2 - 21x + 54 = 0$

6pts 11. Graph
$$\mathbf{y} = \mathbf{x}^2 - 4\mathbf{x} - 12$$

6pts 12. Graph $\mathbf{y} = -\mathbf{x}^2 + 9$
2a

6pts 13. If the supply function for a commodity is $\mathbf{p} = \mathbf{q}^2 - 4\mathbf{q} + 23$ and the demand function is $\mathbf{p} = -2\mathbf{q}^2 + 11\mathbf{q} + 173$ find the equilibrium quantity and price.

6pts 14. Graph $y = x^3 + 2$