MATH114 COLLEGE MATH 100pts SAMPLE TEST 1 \& STATISTICS
\qquad
The best 20 of these 21 problems will count 5 points each

1. Solve $7 x-5=4 x+1$
2. Solve $\frac{3 x}{3}+x=\frac{x+5}{4}+4$
3. $\frac{x+1}{2 x-1}=\frac{x+9}{2 x+3}$
4. The sum of three consecutive integers is 693 . Find the integers.
5. Your weekly paycheck is 10% more than your coworker's. Together the two checks total $\$ 525$. Find the amount of each check.
6. Solve $I=\operatorname{Prt}$ for t.
7. Factor $\mathrm{x}^{4}-16$
8. Factor $2 x^{3}-16$
9. Factor by grouping $\quad 2 a x+2 a y+b x+b y$
10. Solve the quadratic $x^{2}-11 x+30=0$ by factoring

MATH114 COLLEGE MATH 100 pts SAMPLE TEST 1 \& STATISTICS
p. 2
\qquad
In problems $11 \& 12$ use the quadratic formula to solve $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
11. $\mathrm{x}^{2}-7 \mathrm{x}-18=0$
12. $3 x^{2}-11 x-20=0$
13. One number is two more than another positive number. Their product is 63 . Find the numbers.
14. Solve $7 x+3<4 x+6$ and show the solution on the number line provided.

15. Solve $|4 x-3| \leq 9$ and give the solution in interval notation.
16. Graph $y=3 x+1$
17. Determine the slope of the line passing through $(1,5)$ and $(4,14)$

MATH114 COLLEGE MATH 100pts SAMPLE TEST 1 INSTRUCTOR: C. MORRIS \& STATISTICS
 p. 3
 NAME:
 \qquad

18. Determine the quantity demanded when the price is 40 in the graph below (mark the graph).

19. Are the lines $\mathrm{y}=2 \mathrm{x}-5$ and $2 \mathrm{x}-\mathrm{y}=12$ parallel, perpendicular or neither? Show work to support your answer.
20. Water freezes at $0^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{F}$ and boils at $100^{\circ} \mathrm{C}$ or $212^{\circ} \mathrm{F}$. Find a linear equation that converts Celsius temperatures to Fahrenheit temperatures.
21. A new machine costs $\$ 100,000$ and has a salvage value of $\$ 10,000$ after six years. Assume depreciation is linear and determine the model that gives the machine's value at time $t(0 \leq t \leq 6)$.

Formulas
$y-y_{1}=m\left(x-x_{1}\right) \quad y=m x+b \quad m=\underset{x_{2}-y_{1}-y_{1}}{x_{1}}$
$x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)$
$x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right)$

