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ABSTRACT

The heat stress index (HSI) is a new, comprehensive summer index that evaluates daily relative stress for
locations throughout the United States based on deviations from the norm. The index is based on apparent
temperature and other derived meteorological variables, including cloud cover, cooling degree-days, and con-
secutive days of extreme heat. Statistical distributions of meteorological variables are derived for 10-day periods
of the annual cycle so that percentile values for each parameter can be determined. The daily percentile values
for each variable are then summed, and a statistical distribution is fit to the summed frequencies. The daily HSI
value is the percentile associated with the location of the daily summed value under the summation curve. The
index is analyzed and spatially verified by comparing intra- and interregional results. Although stations from
various climate regions have different criteria defining an excessive heat stress event, neighboring stations
typically produce similar HSI results because they are usually affected by the same air mass. To test the
effectiveness of the HSI, a relationship between the index results and mortality values is made. Overall, the
highest mortality days are associated with the highest HSI values, but high-HSI days are not always associated
with high numbers of deaths. A mortality study such as this one is just one of many potential environmental
applications of the HSI. Other applications include implementing the index to correlate extreme weather con-
ditions with resource consumption, such as electric-utility load, to determine conditions for which load levels
are excessive. The ability to forecast the HSI using a variety of weather forecasting tools has also generated
interest within various industries that have a need to issue weather stress advisories, watches, and warnings.

1. Introduction

Researchers have long recognized that the level of
human physical comfort is not only dependent upon air
temperatures, but is related to the interaction of a num-
ber of weather variables. For example, human response
to a moist, hot summer day varies considerably from
the response to dry heat. In addition, that same hot, dry
day elicits a different reaction from people in Phila-
delphia, Pennsylvania, and Phoenix, Arizona.

In an effort to quantify the reaction differences among
such days, numerous indices have been developed over
the years that give a measure of how comfortable a
person feels based on the current weather conditions
(Hevener 1959; Thom 1959; Masterton and Richardson
1979; Steadman 1984; Höppe 1999; Jendritzky et al.
2001). The National Weather Service (NWS) heat index
is an approximation of the Steadman (1979a,b, 1984)
apparent temperature (AT) tables (NWS 1992). The
main shortcoming of the NWS heat index is that its
formulation does not incorporate a number of variables
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that contribute to weather stress, including wind speed,
cloud cover, and solar radiation, which are obvious fac-
tors contributing to ‘‘how hot it feels’’ on a given day.
In addition, none of the previously developed indices
account for the cumulative negative impact of heat over
a period of, for example, several days.

Virtually all comfort indices are derived solely on
absolute conditions and do not consider relative stress
and adaptation based on time and location. For example,
many NWS offices issue heat stress alerts based on an
absolute condition of a predicted NWS heat index value
of 40.68C or greater and a minimum air temperature of
26.78C or higher for two consecutive days. Although
the NWS is now recognizing the shortcomings involved
in this delineation, these thresholds were arbitrarily de-
termined and have been sustained historically. The cur-
rent thresholds have little relation to human weather
response, time of year, or the climatological makeup of
the locale.

Kalkstein and Davis (1989) established threshold
temperatures, which represent the temperature beyond
which human mortality significantly increases, for cities
throughout the United States. The results show that
threshold temperatures vary widely across the country,
from the upper 20s (8C) in New England to over 388C
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FIG. 1. Spatial distribution of first-order weather stations throughout
the continental United States that existed from 1971 to 2000.

in the southern United States. This variation explains
why there can be significant excess mortality in New
York City, New York, when apparent temperatures ex-
ceed 328C, but not a similar response in Dallas, Texas,
where these conditions are common during the summer.
These results clearly identify the need for a compre-
hensive relative index.

Kalkstein and Valimont (1986, 1987) introduced the
only commonly known relative index, the weather stress
index (WSI). This index is calculated by evaluating how
AT varies from a mean value for a given hour on each
day at each locale. However, the WSI excludes other
important meteorological parameters related to heat
stress. Although used in research (Balling and Brazel
1986), the WSI was never officially adopted by the NWS
or widely used by climate scientists.

A new, comprehensive summer relative comfort in-
dex, the heat stress index (HSI), is introduced in this
paper. This index improves upon the limitations of the
current widely used indices in the United States, as well
as the shortcomings of the WSI, and can be useful in
research and operational applications. The HSI has the
ability to evaluate daily mean relative stress values for
each first-order weather station in the United States. It
includes important variables not used in previous in-
dices, such as consideration of the impact of consecutive
days of stressful weather, daily cloud cover (as a sur-
rogate for solar load), and accumulation of heat through
the day. In addition, the index has been designed to fit
seamlessly into NWS forecasts, permitting daily values
to be calculated for time periods up to 48 h in advance.

2. Index development

a. Meteorological data

The U.S. Surface Airways and Airways Solar Ra-
diation hourly weather data (known as TD-3280) were
acquired from the National Climatic Data Center for
every active first-order weather station with data cor-
responding to the current 30-yr climate normals (1971–
2000) (National Climatic Data Center 2003). Over 230
first-order weather stations across the continental United
States met these criteria (Fig. 1).

For each of these stations, hourly air temperature (8C),
dewpoint temperature (8C), relative humidity (%), cloud
cover (tenths), and wind speed (m s21) data were ex-
tracted for the warm-season months (May–September).
An entire day was omitted if any hourly observations
within that day were missing, because the index is based
on daily averages and extremes.

b. Method

A unique algorithm for calculating the HSI was de-
veloped for each 10-day period from May through Sep-
tember (1–10, 11–20, 21–31 May, etc.) at each location.
The steps necessary to create each HSI algorithm are
summarized in a flow chart (Fig. 2).

A 10-day interval is chosen to minimize the vari-
ability of mean weather conditions over the period of
time to which a single algorithm is applied. A monthly
time scale was originally considered, but too much var-
iability occurs from the beginning to the end of the
month, most notably early and late in the warm season.
For example, the conditions in early June and late Au-
gust tended to lower the average of the entire month,
skewing the overall results. A future improvement is to
develop even shorter, possibly daily, intervals to elim-
inate any temporal variability in mean meteorological
conditions altogether. However, it is uncertain whether
the slight increase in accuracy would compensate for
the much greater effort necessary to accomplish this
task. It is possible that, for certain precise applications,
such as utility load estimation, this increase in accuracy
might provide a benefit. Regardless, the basic method
would remain the same, and the goal of this paper is to
introduce the methods behind the HSI.

The first step is to calculate hourly apparent temper-
ature values using the Steadman (1984) ‘‘in the shade’’
algorithm. The Steadman AT index is based on the phys-
iological, clothing, and heat transfer effects on humans.
Apparent temperature in the shade accounts for outdoor
conditions in which the effects of wind are felt but the
effects from extra radiation are not considered.

The second step is to select and to calculate the five
parameters necessary to calculate the HSI. These pa-
rameters consist of daily maximum and minimum Stead-
man AT values (ATMAX and ATMIN), cooling degree-
days (CDD), mean cloud cover (CCMEAN), and the
number of consecutive days of extreme heat (CONS).
These variables were selected based on our previous
knowledge of human and social responses to extreme
weather conditions. Although more can be included,
these variables are deemed best because they encompass
the most important factors relating to societal response:
thermal conditions during daytime and nighttime, cal-
culation of accumulated daily heat load, solar load, and
the temporal extent of extreme heat. A description of
each variable follows.
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FIG. 2. Steps involved in the development of the heat stress index.
Maximum and minimum apparent temperature (ATMAX and AT-
MIN), mean cloud cover (CCMEAN), cooling degree-days (CDD),
and a consecutive day count (CONS) are the variables used to create
the index.

1) ATMAX (ATMIN) is the highest (lowest) hourly AT
value recorded over a 24-h period. ATMIN affects
human stress levels as much as or more than AT-
MAX does because high daily ATMINs hinder over-
night heat relief. For example, elevated ATMIN,
along with high ATMAX, conditions during the 1995
Chicago, Illinois, heat wave rendered that event par-
ticularly unusual and deadly (Karl and Knight 1997).

2) The CDD variable is calculated by summing the
number of degrees above an hourly apparent tem-
perature of 18.38C over a 24-h period. CDD accounts
for temperature fluctuations such as those often as-
sociated with a temperature drop after the onset of
a thunderstorm or passage of a cold front, which can
bring relief to an otherwise stressful situation. It is

frequently the case that higher CDD totals occur on
days with lower ATMAX but no cooling thunder-
storm activity; the former day is considered to be
more stressful to humans than the latter (Kalkstein
et al. 1996).

3) CCMEAN represents the average hourly cloud cover
values from 1000 to 1800 LST. These hours were
chosen because clear skies during the daytime gen-
erally add stress through an increased solar load (Kil-
bourne 1997). The CCMEAN scale is 0.0–8.0, and
the mean cloud cover values are smoothed such that
if 0.00 # CCMEAN , 0.25 then CCMEAN 5 0.0,
if 0.25 # CCMEAN , 0.75 then CCMEAN 5 0.5,
if 0.75 # CCMEAN , 1.25 then CCMEAN 5 1.0,
if 1.25 # CCMEAN , 1.75 then CCMEAN 5 1.5,
and so on, up to 8.0. It is important to note the
possible misinterpretation of cloud cover data re-
sulting from the gradual implementation of auto-
mated surface observing system (ASOS) stations in
the United States during the early 1990s. ASOS sta-
tions only report ceiling up to 12 000 ft and do not
distinguish between thin and opaque cloud cover.
Although some ASOS sites are augmented by human
observers who can help to overcome this shortcom-
ing, many ASOS sites are not (National Climatic
Data Center 2003).

4) A consecutive day (CONS) is counted when the AT-
MAX value was at least one standard deviation
above the AT mean over the 10-day period. The
criteria were arbitrarily chosen but produced logical
results such that consecutive days were a rarity, es-
pecially in locales with less climate variability. The
count increases with each consecutive day that AT-
MAX exceeds the threshold but drops back to zero
when conditions are not met or the day’s data are
missing. Consecutive day count is included because
there is a negative human health impact of extreme
weather that increases with each day of persisting
stressful conditions (Kalkstein and Davis 1989; Kil-
bourne 1997).

The third step involves fitting a statistical distribution
to each of the variable frequencies. Variable frequency
patterns for every 10-day interval and station were con-
sidered, and a distribution was chosen that was deemed
the best overall fit. ATMAX, ATMIN, and CDD fre-
quencies are approximated by beta distributions. A neg-
ative binomial distribution is fit to the CONS frequen-
cies, because it captures best the overwhelming number
of zero consecutive days that are consistently present at
every location during each period. An empirical fit is
the best option for the CCMEAN frequencies because
the patterns vary greatly among stations. An empirical
fit means that the curve is fit directly by connecting a
line to each frequency value associated with observa-
tions rather than by approximating or smoothing the data
(Figs. 3a–e, 4a–e).

The fourth step is the determination of the percentile
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FIG. 3. Examples of (a) ATMAX, (b) ATMIN, (c) CDD, (d) CONS, (e) CCMEAN, and (f ) summation (SUM) 1–10 Jul frequency
distribution curves for Philadelphia.

of each variable for each observation using a cumulative
distribution function (CDF). The cumulative probability
of a negative binomial distribution is determined by
summing the p(x) values to the actual daily parameter
for that given day. However, the CONS results had to
be adjusted because the zero days were such an over-
whelming majority at each location. The zero days were
set equal to a probability of zero, p(0), and the other
consecutive-day cumulative probabilities, pa(x), were
scaled as

3
p(x)

p (x) 5 (1)a [ ]1 2 p(0)

such that pa(x) represented the adjusted daily values for
each CONS observation. The equation was cubed so
that the CONS percentile values would be more intui-
tive. This adjustment enables the first day of consecutive
heat stress to be lower than the 50th percentile and
increases the percentile difference with increasing con-
secutive days.

Based on the definition of a CDF, a similar process
was applied to the empirical fit of CCMEAN. The prob-
ability associated with a specific CCMEAN value was
assumed to be equivalent to the frequency of its occur-
rence in relationship to the total number of CCMEAN
observations over the 30-yr period. Thus, a cumulative
sum of the probabilities up to and including the
CCMEAN value for a given day represented the area
under the empirical curve and became the CCMEAN’s
percentile value.

An example of the weather variables representing

conditions on 4 July 1999 in Philadelphia and their cor-
responding daily percentile values based on their lo-
cation under the curves is given in Table 1.

The fifth step requires the summation of the daily
percentile values for each of the five variables for each
day and location. The summation is simply

SUM 5 ATMAX 1 ATMIN 1 CDD 1 CONS

1 (1 2 CCMEAN). (2)

CCMEAN is subtracted from 1.0 to account for the fact
that clear, rather than overcast, conditions add the most
stress to a daytime situation. The summation value based
on the Philadelphia example in Table 1 is equal to 3.95.

Two issues were considered when addressing the rel-
ative weight of the variables in the summation algo-
rithm. The first involved the explained variance asso-
ciated with each variable in the index. Because of col-
linearity among the variables, it seemed more logical to
weight them based on their uniqueness within the da-
taset. An attempt was made to use nonrotated principal
components analysis (PCA), which is a multivariate sta-
tistical procedure designed to remove intercorrelation
between variables, as described by Daultrey (1976). The
results of the PCA were problematic and nonintuitive.
There is no logical explanation of how the days are
ranked, and principal components are notoriously dif-
ficult to interpret. Because of these problems, it was
decided to apply equal weights to the variables; for more
details on this issue refer to Derby (2002).

The second issue involving the weighting of variables
relates to the impact of the parameters upon the envi-
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FIG. 4. Same as in Fig. 3 but for the 1–10 Jul frequency distribution curves for Phoenix.

TABLE 1. Philadelphia weather variables and their corresponding
daily percentile values for 4 Jul 1999.

Variable Data Daily value

ATMAX
ATMIN
CDD
CONS
CCMEAN

398C
278C

3548C
2
5.11

0.99
0.97
0.99
0.51
0.51

ronmental application being evaluated. For example,
minimum apparent temperature may be disproportion-
ately important when affecting heat-related human mor-
tality, whereas maximum apparent temperature may
have unusually high significance when evaluating utility
peak load. Because the HSI is designed as a ‘‘multiple
use’’ index for a large variety of environmental and
social factors, it is unwise to vary these weights for any
single environmental application. A suggested proce-
dure to overcome this issue of weighting is, first, to
isolate the HSI days that are most stressful and second,
within those days, to determine which variables most
significantly affect the environmental factor being eval-
uated. This approach has been used successfully in the
development of numerous heat/health watch/warning
systems, in which oppressive air masses associated with
high human mortality have been isolated, and the of-
fensive variables within those air masses are then de-
termined through correlation procedures and are used
to develop predictive algorithms (Kalkstein et al. 1996).

The sixth step is to fit a distribution to the summed
values by following guidelines similar to those given in
the third step (Figs. 3f, 4f). The beta distribution func-

tion is chosen based on the overall summation frequency
patterns for each 10-day period and location.

Last, the seventh step is the calculation of index val-
ues for every summer day within each station’s 30-yr
dataset based on the percentile of each summation
(SUM) value (similar to the fourth step). For example,
the values reported in Table 1 for 4 July 1999 in Phil-
adelphia result in a 97% day.

c. Forecasting capabilities

The HSI can be forecast for time periods up to 48 h
in advance. The input data currently come from the
Aviation (AVN) run of the National Centers for Envi-
ronmental Prediction Global Spectral Model (Dallavalle
and Erickson 2000; Erickson et al. 2002). The AVN
data are linearly interpolated to approximate weather
parameters for the hours that occur within the 3-h in-
tervals provided. Among the weather parameters fore-
cast are temperature, dewpoint, cloud cover, and wind
speed, which are all required to calculate the HSI. Each
parameter needs to be converted to the appropriate units.
Cloud cover is represented by character abbreviations
rather than in numerical format, and so the abbreviations
are defined numerically as CL (clear) 5 0.0, SC (scat-
tered) 5 2.0, BK (broken) 5 6.0, and OV (overcast) 5
8.0. The HSI is calculated for ‘‘today’’ and ‘‘tomorrow’’
using the 0000 UTC data but is updated to include today,
tomorrow, and the following day when the 1200 UTC
model data become available. With improving midrange
forecasting from the National Oceanic and Atmospheric
Administration (NOAA) Climate Prediction Center, it
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TABLE 2. Comparison of HSI values and components given the assumption that the same weather conditions applied at various locations.

Variable Data Philadelphia Phoenix Baton Rouge Miami Cheyenne Des Moines

ATmax
ATmin
CDD
CCMEAN

358C
238C

2618C
3.78

86%
82%
88%
57%

5%
18%

5%
20%

47%
28%
43%
55%

69%
7%

26%
73%

100%
100%
100%

47%

85%
90%
90%
46%

CONS
SUM
Daily value

1 20%
3.33
88%

25%
0.73
9%

25%
1.98
51%

19%
1.94
49%

17%
3.64
95%

18%
3.29
86%

TABLE 3. Comparison of HSI values and components given the
assumption that the same weather conditions applied to each warm-
season month in Philadelphia.

Variable Data
1–10
Jul

1–10
May

1–10
Jun

1–10
Aug

1–10
Sep

ATMAX
ATMIN
CDD
CCMEAN

358C
238C

2618C
3.78

86%
82%
88%
57%

100%
100%
100%

65%

100%
98%
99%
61%

86%
72%
86%
59%

96%
91%
97%
55%

CONS
SUM
Daily value

1 20%
3.33
88%

25%
3.90
96%

32%
3.90
95%

17%
3.20
86%

17%
3.56
91%

will be possible to forecast the HSI for periods beyond
48 h.

3. Evaluation

a. Index analysis

Heat stress index values were calculated for each
summer day over the 30-yr period from 1971 to 2000
for each of the 230 first-order weather stations across
the continental United States. The 30-yr period of record
is archived for all of these stations, and the HSI is ready
for general application. Spatial and monthly HSI com-
parisons were made for a number of stations, and the
relative nature of the index is very apparent.

The weather conditions in Philadelphia on 3 July
1999 were evaluated to show what the HSI would be
if those conditions occurred at other stations (Table 2).
On 3 July 1999, Philadelphia, had partly cloudy skies
and apparent temperatures high enough to consider this
as a first consecutive day, which results in an 88% HSI
value. Des Moines, Iowa, produced results very similar
to those of Philadelphia; it is clear that there are simi-
larities in summer climate between the two stations.
However, the results for Baton Rouge, Louisiana, Phoe-
nix, and Miami, Florida, assuming the same conditions,
are very different. The 3 July 1999 Philadelphia AT-
MAX conditions are common occurrences in Baton
Rouge and Miami at that time of year, and their ATMIN
values at these southern locations rarely drop as low as
Philadelphia’s. Phoenix, Baton Rouge, and Miami
would not begin a consecutive day count with ATMAX
values that low, and so their overall index values are
lower. The percentages associated with a partly cloudy
sky are not highly variable among the locations, except

for Phoenix, where clear skies are so dominant that any
cloudiness is associated with a low percentage. Based
on this example, residents of Des Moines, Philadelphia,
and Cheyenne, Wyoming, are experiencing moderate to
severe heat stress and should be advised of potential
health risks. People living in Baton Rouge and Miami
deem these weather conditions to be somewhat typical;
in Phoenix, these conditions would be unusually cool
for a July day.

In an evaluation of relative stress on a temporal scale,
the same 3 July 1999 weather conditions were also as-
sumed to occur at Philadelphia at different times during
the warm season: the first 10 days of May, June, August,
and September (Table 3). In general, these conditions
would be less frequent and therefore more stressful if
they occur in any of these months. The individual var-
iable percentages are higher in every category, espe-
cially during May and June. The August percentages
also tend to be higher but are much closer to the July
percentages. Very little variation is seen in cloud cover
from one month to the next, except in the beginning of
May.

Although the HSI results are relative to each location,
if this index is robust, then there should also be con-
siderable similarity among neighboring stations. An
evaluation among adjacent stations shows a very high
rate of correspondence, and the few exceptions can be
logically explained. Philadelphia and Wilmington, Del-
aware, (51 km to the south of Philadelphia) represent a
good example of station pairs for which variable dis-
tribution curves and day-to-day weather patterns are
similar. Their HSI values have an overall correlation
value of 0.95.

Occasionally there are station pairs that produce very
different HSI values. For example, Phoenix and Tucson,
Arizona, are only 187 km apart but their variable fre-
quency curves are not similar (Fig. 5). Tucson is cooler
and somewhat cloudier than Phoenix. This result is
clearly related to topography; Tucson’s elevation of 777
m is more than 2 times that of Phoenix. These dissimilar
variable curves are a major contributor to the 0.78 cor-
relation found between Phoenix and Tucson’s HSI val-
ues. When the weather conditions in Tucson are close
to the average conditions in Phoenix, the index at Tuc-
son returns extreme values. For example, on 12 August
1993, Tucson has an index value of 95.42%, whereas
Phoenix’s HSI is only 53.30% even though the ATMIN
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FIG. 5. Phoenix (solid line) and Tucson (dashed line) 1–10 Aug distribution comparisons provide an example of how the climate differs
between the two locations.

TABLE 4. Comparison of HSI values for Phoenix and Tucson on
12 Aug 1993. The daily percentile values of each variable are pro-
vided in parentheses.

Phoenix Tucson

ATMIN (8C)
ATMAX (8C)
CDD (8C)
CONS

26.4 (0.40)
38.4 (0.47)

343.0 (0.42)
0 (0.00)

23.4 (0.69)
38.6 (0.94)

316.4 (0.96)
4 (0.57)

CCMEAN
SUM
Daily %

0.00 (0.79)
2.08

53.03

2.78 (0.52)
3.68

95.42

at Phoenix remains higher (Table 4). Tucson’s CONS
baseline values are also much lower than those in Phoe-
nix. During August, Tucson begins a CONS count when
ATMAX is above 36.98C, but Phoenix does not begin
until ATMAX reaches 41.08C.

The analysis of Phoenix and Tucson explains why it
is important to calculate different HSI means, even at
nearby stations. In essence, Tucson should not be com-
pared with Phoenix because their curves are so different,
based upon significant differences in geography, and, as

a result, meteorological conditions. Thus, human and
societal responses to meteorological conditions in these
two cities are not as similar as one might expect, even
though they are both in desert climates. This case is
more common in the western United States, where vary-
ing topography over short distances can cause differ-
ential meteorological characteristics.

Explanations can also be offered about less common
poor relationships that sometimes occur for station pairs
whose curves are similar. The typical situation is that
there is a weather phenomenon that affects one station,
but not the other, such as a cold front progressing
through the area that causes one station’s HSI to be
lower than the other’s. Another major contributor to
differing HSI values at nearby stations is when ATMAX
is near the consecutive day baseline at each location.
For example, on 21 July 1994, Philadelphia’s HSI is
96.58% while the index in Wilmington is 75.57% (Table
5). The 21–31 July consecutive baseline value for Phil-
adelphia is 34.28C and the value at Wilmington is
33.58C. Philadelphia continues its CONS count on the
third day while Wilmington resets to zero. The differ-
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FIG. 6. (a) HSI values and (b) mean AT values vs mortality among the elderly for Philadelphia
during the summers of 1975–92. The mortality data were standardized based on the 3-month
interval (Jun, Jul, Aug) yearly means.

TABLE 5. Comparison of HSI values for Philadelphia and Wil-
mington on 21 Jul 1994. The daily percentile values of each variable
are provided in parentheses.

Philadelphia Wilmington

ATMIN (8C)
ATMAX (8C)
CDD (8C)
CONS

27.0 (0.97)
35.4 (0.87)

293.9 (0.93)
3 (0.57)

25.7 (0.95)
33.0 (0.74)

259.3 (0.86)
0 (0.00)

CCMEAN
SUM
Daily %

4.56 (0.55)
3.88

96.58

5.78 (0.30)
2.86

75.57

ence in the variable percentage of the three consecutive
days versus a zero consecutive day is dramatic enough
to cause such an index deviation from one location to
the other. However, given the large number of similar

values between adjacent stations, occasions when prox-
imate stations have HSI values that differ greatly are
rare.

b. Mortality application

Mortality rates among the elderly (65 yr and older)
were compared with the HSI values in Philadelphia to
test the effectiveness of the index for applied climato-
logical problems. Steadman’s AT daily mean values
were also compared with the mortality data to see which
index is a better indicator of conditions associated with
higher mortality. Previous studies show the need to con-
sider total deaths in heat-mortality studies (Kalkstein
1991). Mortality data were obtained for each June, July,
and August between 1975 and 1992 (National Center
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FIG. 7. Top 20 mortality days plotted against the (a) HSI values and (b) mean AT values during
the summers of 1975–92. Dashed line separates the top 5% HSI values and mean AT values.
The mortality data were standardized based on the 3-month interval (Jun, Jul, Aug) yearly means.

for Health Statistics 2001). The data were standardized
about the 3-month interval yearly mean to remove fluc-
tuations and long-term trends.

As expected, there is an overall trend toward increas-
ing mortality among the elderly once the HSI values are
above 70% (Fig. 6a). The trend becomes more obvious
once the HSI rises above 79%. However, a similar pat-
tern occurs when daily mean AT values are considered.
Mortality among the elderly generally increases as mean
AT rises above 278C (Fig. 6b).

The HSI and mean AT values are difficult to compare
because of differences in scale, but some important dis-
tinctions are apparent. Days with the highest mortality
are grouped at the high end of the HSI scale, whereas
they occur at a much wider range of AT values. This
result suggests that for AT there are a number of days

when above-average mortality occurs even when values
are not so extreme.

An evaluation of the top 20 mortality days is instruc-
tive. Note that only 12 of the 20 are above the 70%
HSI value and 278C mean AT value, indicating that not
all high-mortality days occur during periods of exces-
sive heat stress (Figs. 7a,b). However, 8 of the top 12
results, including the three highest-mortality days, are
associated with HSI values above 95%, whereas only 4
of the top 12 occur within the top 5% of AT values (for
Philadelphia, defined to be greater than 29.98C). This
suggests that the HSI does a better job than AT in iso-
lating the highest-mortality days. The comprehensive
nature of the HSI, as well as the relative component,
renders it an improvement over the simpler and absolute
AT values.
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FIG. 8. Days with HSI values 95% and greater vs mortality among the elderly categorized by
month.

One drawback of the HSI is that it cannot always be
surmised that days close to 100% will signify above-
average mortality. To be specific, 34.8% of the days
with index values of 95% and above are below average
in mortality. Most of the highest HSI days with below-
average deaths occur during August (Fig. 8), which sug-
gests an acclimatization to heat occurs as the season
progresses, causing fewer deaths by the end of the sum-
mer. Another possibility is that elderly, ill, and infirm
people most susceptible to dying from heat stress die
earlier in the summer. The fact that three out of the five
highest-mortality days occur during June, coupled with
the knowledge that June has the least number of below-
average mortality days, supports this theory. If the HSI
were ever to be implemented in mortality applications,
an inclusion of a time-of-year variable would be essen-
tial to distinguish these intraseasonal differences.

4. Conclusions

The HSI is an improvement over other public-ori-
ented indices, because it considers relative stress and
adaptation based on spatial and temporal conditions. In
addition, the relative index includes some parameters
that have not been incorporated into other indices but
are proven contributors to heat stress and numerous
health and social problems. The index is based on max-
imum and minimum apparent temperature, cloud cover,
cooling degree-days, and the number of consecutive
days of extreme heat. These values are evaluated for
locations throughout the United States based on devi-
ations from average conditions during the months of
May–September. A 97% HSI value indicates that only
3% of days on that date are expected to experience more
stressful conditions than the day under review.

As is the case with all climatic indices, the HSI rep-
resents an abstraction of reality and is not perfect. It

would be appealing if the influence of the individual
variables within the index could vary, but, if an index
is to have a broad application, this characteristic is dif-
ficult to do. Upon developing the HSI, the following
question was asked, ‘‘Is this index a significant im-
provement beyond what is most often used now by the
NWS, by the public, and in general climate research?’’
We believe the intraseasonal and temporal relative na-
ture of the index is a significant improvement. In ad-
dition, the inclusion of variables not found in commonly
used indices is a second advantage of the HSI. It is also
emphasized that if an index of this type is to have wide-
spread applicability, it must depend upon easily obtained
and commonly forecast variables. This consideration is
surely key; all variables used in the HSI are easily ex-
tracted from all first-order weather stations and are
available as forecasts from public or private entities.

The HSI could benefit both the operational and re-
search fields with its ability to be used in numerous
environmental applications. During the summers of
2001–02, HSI forecasts were disseminated as part of an
experiment to determine the public’s reaction to a rel-
ative index. The index was calculated 48 h in advance
using the AVN forecasts. Based on discussions with the
National Weather Service, HSI values were converted
to a scale from 0.0 to 10.0 and descriptors were used
to render the index simple for public consumption (e.g.,
HSI values between 9.0 and 9.5 were considered ‘‘se-
vere,’’ and between 9.6 and 10.0 they were labeled ‘‘ex-
treme’’). The overall results of a Web site–based poll
were highly positive, with the vast majority of users
saying that the index should continue. There is discus-
sion about expanding the HSI to worldwide locations
within temperate climates for all or part of the year and,
possibly, creating a winter relative index. The HSI can
also be incorporated within various health-oriented ini-
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tiatives such as heat/health watch/warning systems, for
which it is necessary to determine threshold conditions
that lead to declines in human health. The HSI may also
be very useful in applications such as electricity and
water demand associated with heat stress.

For some applications, it may be useful to implement
an absolute meteorological determinant to add value to
the HSI evaluation. For example, HSI values above 95%
are not always associated with increased mortality.
Therefore, a flexible threshold, based on geographic lo-
cation and time of year, could be established if the HSI
is used to issue heat watches and warnings. Because
thresholds are unique to each application, they are best
used as companions to the HSI rather than being in-
corporated into the HSI algorithm.

The HSI is a work in progress, and there are plans
to continue to refine the index based on user needs, to
increase forecasting accuracy, and to test overall effec-
tiveness. However, the general concept of a relative in-
dex is sound, and it represents a required means in the
way the impact of weather upon society is evaluated.
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