Late April Tornadoes

Harold E. Brooks NOAA/National Severe Storms Lab Norman, OK harold.brooks@noaa.gov

(Thanks to Jerry Brotzge, Greg Carbin, Victor Gensini, Kevin Manross, Kiel Ortega)

Radar reflectivity (OKC vs. Tuscaloosa)

Rotation tracks (3 May 99 vs April 11)

http://ngs.woc.noaa.gov/storms/apr11_tornado/

Future Radar Developments

Polarimetric radar (deploying now)

 Improves precip, sees tornado debris

Phased-array
Gap-filling radars

Phased Array Radar (10 May 2010) Lake Stanley Draper Tornado

Given City Area Tornadoes 5:47 PM 10 May 2010

CASA and NEXRAD – May 10, 2010

Future of Forecasting

Ensembles based on radar input
Run often for a few hours
Generate probability of environmental conditions

Convective-scale Warn-on-Forecast Vision

Stensrud et al. 2009 (October BAMS)

Generating the ensemble

Challenges

Rapid and accurate data quality control – Ordinary vs. extraordinary Model error Sensitivity to errors in environmental conditions Assimilation method to use? Ensemble methods for convective-scale